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CHAPTER 1

The Process of Econometric
Information Recovery

MOST econometric problems begin with several fundamental questions. One basic
question is, How does one develop a plausible basis for reasoning in situations involving
partial–incomplete information? Another basic question relates to how one goes about
learning from a sample of data.

For the theoretical econometrician, questions tend to be of a nonempirical and
hypothetical what-if type: What if a sample of data is described by a particular imag-
ined sampling process? This leads to the question of how one characterizes the sam-
pling process in terms of a probability model that properly identifies the stochastic
characteristics of the sampling process as well as the data-restricting constraints, the
knowns and unknowns of the problem, and the observable and unobservable com-
ponents in the model. Given that the data-sampling process can be described by a
probability model that expresses the state of knowledge about possible real-world
outcomes, another question then arises relating to how one devises effective esti-
mation and hypothesis-testing procedures that will allow the recovery of estimates
of the unknowns and provide a basis for making inferences. The theoretical econo-
metrician may, by a process of interpretation, ultimately associate the conceptualized
sampling process with a set ofobservable economic data. At this point in the theoretical
econometrician’s investigation the probability model is interpretable as an economet-
ric model having economic meaning with both real-world economic and statistical
implications.

For the applied econometrician, the econometric problem begins with a real-world
economic question, perhaps involving the implications of scarcity and choice or perhaps
the allocative or distributive impacts, resulting from an action or decision. The next step
involves restating the real-world question within a theoretical–conceptual economic
model framework in which real-world components are identified to facilitate drawing
logic-based conclusions about the question. This step exposes structure and defines
the explicit economic model to be used in the empirical analysis of the economic
question.
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THE PROCESS OF ECONOMETRIC INFORMATION RECOVERY

1.1. Introduction

Given a theoretical–conceptual economic playing field, a basis is needed for connect-
ing the real-world data outcomes with their counterparts in the economic model. By
visualizing some imagined sampling process by which the outcomes may have evolved
and then characterizing this sampling process by a probability model, an economet-
ric model is born. This model then acts as a vehicle for expressing knowledge about
real-world outcomes and identifies knowns, unknowns, and observed and unobservable
model components. If the applied econometrician is fortunate, the resulting economet-
ric model may be consistent with a probability model that already exists in the literature
and for which a well-defined basis for estimation and inference is already available.
In this case the applied econometrician will use established statistical procedures to
address research questions. On the other hand, the econometric model may not be
consistent with a commonly specified and evaluated data-sampling process. Conse-
quently, the applied econometrician must assume the role of the theoretical econome-
trician in first developing effective estimation and hypothesis-testing procedures and
then carrying through the estimation and inference stages needed to answer research
questions.

As one reads through this chapter and the chapters ahead, it will at times be necessary
to assume the roles of both a theoretical and an applied econometrician to derive
maximum benefit from the econometric venture. One goal of the exercises in each
chapter is to lead and inspire the reader in this direction. Before going on to consider
the question of how to specify a probability–econometric model to provide a basis for
learning from a sample of observations, we focus some attention on the real-world
component referred to as economic data.

1.2. The Nature of Economic Data

Why do we have books on econometrics? Why not just have books devoted to statistics
for economists? What is it that makes economics unique relative to other fields of
science?

One thing that tends to make economics and econometrics unique is the nature
of economic data and the special characteristics of the sampling processes by which
economic data are obtained. In providing an answer to the opening questions of this
section, William Barnett, in private correspondence, points us to a classic article by
Schumpter inEconometrica, Vol. 1, No. 1, 1933, “The Common Sense of Economet-
rics.” In this article Schumpter wrote, “Econometrics is the most quantitative. . . of all
sciences, physics not excluded.. . . Every economist is an econometrician whether he
wants to be or not.” His rationale is that the economy produces and inherently depends
upon numbers. Indeed, the very act of transacting in markets depends explicitly upon
the numerical values of such variables as quantities and prices. But in physics, for
example, the physical world can and will operate without dependence upon numerical
measurement of variables. Scientists have to construct devices to measure temperature,
pressure, speed, weight, and the like because nature does not “quote” these numbers in

4
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1.3 THE PROBABILITY APPROACH TO ECONOMICS

markets or even identify a need to know these numbers. So in this sense, as Schumpter
observed, economics is inherently more quantitative than any other scientific field.

Economies and markets carry out experiments and produce numerical data through
the very nature of their operation. However, they do so in a manner that is not usually
in accordance with statistically designed experiments. Although physical scientists can
be viewed, as they are in Schumpter’s article, as being disadvantaged by the need to
measure data, in comparison with economists, who need only record the numerical
data that the economy produces, physical scientists have the advantage of being able
to run controlled experiments and to generate their data in a manner consistent with
established and understood experimental designs. Because the economy is not a sta-
tistically designed experiment, economists must in many cases utilize ill-conditioned
data. This is a principal reason why econometrics requires special tools for probability
model formulation, estimation, and inference and why econometrics is characterized as
an experiment in nonexperimental model building. The uncertain nature of economic
outcomes goes a long way to explaining why almost everyone, at one time or another,
has felt comfortable assuming the role of an economist on certain issues (How often
have you heard the phrase “I am not an economist, but. . .?”) and why all economists
are in one way or another econometricians.

1.3. The Probability Approach to Economics

The probability theory that you encountered in your courses in theoretical statistics
(and that is reviewed in an electronic document on the CD that accompanies this text)
has important implications for how one should organize, incorporate, and utilize data
and prior information in quantitative economic analyses. In economic problems char-
acterized by incomplete knowledge and uncertainty, this theory, through a process of
abstraction and interpretation by analysts, defines a reasoning process for expressing
our knowledge about real-world outcomes, for recovering information from data, and
for assessing its validity. The calculus of reasoning defined by probability theory facili-
tates learning and problem resolution and defines a logical basis for evaluating decisions
and making choices.

Like Mozart’sDon Giovanni, conceptual tools such as random variables and stochas-
tic processes, as well as models of economic systems, have been invented or created by
theoreticians and empirical analysts rather than discovered. The participants or play-
ers in a postulated economic system are presumed to define economic processes that
result in measurable outcomes and, by a process of interpretation on the part of the
econometrician, these outcomes are viewed in probabilistic form. In most econometric
problems, at least a portion of the information available for analysis will be in the form
of a sample of data that has been generated as an outcome of some real-world economic
process. In addition, the analyst generally has some prior knowledge about the relevant
economic processes and institutions that may have conditioned the sample outcomes.
If one views the outcomes of the economic system as having come from an imagined
sampling process, concepts such as random variables and probability distributions can
be used as conceptual tools to characterize the full complement of existing knowledge

5
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THE PROCESS OF ECONOMETRIC INFORMATION RECOVERY

about these economic observables. In particular, a probability model associated with
the imagined sampling process can be defined that serves as a vehicle for describing
our state of knowledge relating to how the observable economic data were obtained.
Given this information repository, the fundamental econometric problem is concerned
with transforming the conceptual probability model and the sample information asso-
ciated with it into more specific knowledge about the unknown model components and
parameters that represent characteristics of real-world economic processes.

1.4. The Process of Searching for Quantitative
Economic Knowledge

In searching for quantitative economic knowledge contained in a sample of data, one
must begin with some understanding of the economic process to which the data relate
as well as some conception of the underlying sampling process by which the data
were obtained. Otherwise, a sample of data is merely a collection of numbers with
no contextual meaning or information value. Thus, to have a basis for interpreting the
observed data, one needs a conceptual model of the process to which the data refer
or some basis for specifying adata-sampling process(DSP) that links the sample of
observations to our state of knowledge about how these observations were obtained.

The first step in this search for economic knowledge is for the analyst to identify
an economic processthat the analyst seeks to understand and about which there is
incomplete knowledge and uncertainty (henceforth refer to Figure 1.1). Byprocesswe
mean a particular method of doing something that generally involves several steps, op-
erations, and interacting components and that leads to an observable outcome or result.
For example, this might be the method by which, given prices and a budget constraint,
consumers decide on market purchases (consumer decision process) or the method
by which a commodity market leads to a product price (a market price equilibrium
process).

The next step is aprocess of abstractionwherebypredatatheories, facts, assump-
tions, and an imagined sampling process whose outcomes are related to random vari-
ables are logically molded together into aprobability–econometric modelof the eco-
nomic process. In a formal and often idealized way, the econometric model summarizes
the analyst’s state of knowledge about the mechanisms that are thought to underlie the
workings of the economic process under study and the sampling process by which
observed data are obtained. The model, which is an abstraction, may be expressed in a
variety of ways such as mathematical equations, algorithms, behavioral rules, diagrams,
or all of these.

1.4.1. Econometric Model Components

It may be useful to think of an econometric model as being composed of components that
include an economic model, a sampling model, and a probability model (Figure 1.1).
Theeconomic modelcomponent distinguishes aneconometricmodel from a biological,
physical, psychometric, or sociometric model. Models in other disciplines are defined

6
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1.4 THE PROCESS OF SEARCHING FOR QUANTITATIVE ECONOMIC KNOWLEDGE

Figure 1.1: Process of Economic Information Recovery.

when appropriate discipline-specific theories, concepts, and knowledge are substituted
in place of the economic model component. The economic model is based on a com-
bination of the analyst’s understanding of the institutions and mechanisms operating
within the economic process being modeled and the economic theory thought to be
relevant for explaining data outcomes produced by the economic process.

Once the economic model has been postulated, interpretations and questions relating
to the workings of the economic process may be deduced from it. In this way the
economic model provides a basis for defining relevant economic variables, forming
tentative explanations, and suggesting hypotheses. However, this process of deduction
tells us nothing per se about the actual truth or falsity of any explanations, hypotheses, or
conclusions. It only ensures that conclusionsdeductivelygenerated from the economic
model are internally consistent with the definitions and postulates on which the model
is basedprovided thatthe rules of logic have been applied correctly.

Thesampling modelcharacterizes a sampling process linkage between observable
economic data and the postulated real-world components of the economic model.
In particular, the sampling model identifies an imagined sampling process postu-
lating that the observed data are the outcome of a collection of random variables

7
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Y={Y1,Y2, . . . ,Yn}. At this point, general assumptions regarding the sampling char-
acteristics of the random variables enter the analysis. For example are the random
variables independent and identically distributed (iid), independent or dependent.

Moving farther in the direction of a formal basis for stating specific stochastic
characteristics of the random variables in the imagined sampling process, theprobability
modelpostulates that the economic data are the outcome of some random variable or
vectorY having a joint probability distribution that belongs to some set of potential
probability distributions, such as{F(y;θ),θ ∈ Ä}. If the elements in the set of probabi-
lity distributions cannot be identified or indexed by a finite vector of parameter valuesθ,
we may more generally denote the collection of probability distributions as F(y) ∈ 9.
By postulating such a probability model, the analyst effectively defines the range of
possibilities for the joint probability distribution thought to characterize the behavior
of potential sample outcomes. Unknown, uncontrolled, and unobservable components
of the probability model are represented by parameters, random variables, or both.
Together, the probability and sampling models identify both the candidates for the joint
probability distribution of the observed data and the degree of interdependence, or lack
thereof, among the individual data observations.

The combination of the probability, sampling, and economic models results in an
econometric modelthat links a specified sampling process to the data. The adjec-
tive econometricarises from the realization, identification, and incorporation of an
economic component into the formation and interpretation of the model. The econo-
metric model represents our knowledge of the sampling of economic data in terms of
a collection of random variables,Y={Y1,Y2, . . . ,Yn}, that have a certain economic
interpretation, a certain dependence structure, and a joint probability distribution that
belongs to some set of probability distributions{F(y;θ),θ ∈ Ä} or F(y) ∈ 9. Having
defined the econometric model, the analyst has effectively specified a complete model
of the sampling of the economic data under investigation. This means that, if values
for the unknown and unobservable components of the perceived econometric model
were known or assumed, the analyst would expect, or hope, that data consistent with
the economic process being analyzed could be simulated from the econometric model.
To the extent that the econometric model represents an accurate depiction of the true
data-sampling process, the simulated outcomes could be used to produce additional
samples of economic data relating to the economic process under study.

1.4.2. Econometric Analysis

Given a fully specified econometric model, the analyst has created a complete proba-
bilistic and economic description and interpretation of the imagined sampling process
for the economic data being analyzed. The model thus provides a complete picture of
the analyst’s state of knowledge about a set of economic outcomes and identifieswhat
is assumedandwhat is left to be discovered in the research process.

An analyst’s econometric model of sample outcomes for the random variablesY is
usually specified in terms of asystematicor signal componentand an unobservable
randomerror, disturbance, or noise componentε. The two components are assumed
to combine in a way that determines theexactvalues of observed sample outcomes.

8
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In particular, the extent to which the value ofY cannot be functionally represented in
terms of the systematic component is accounted for by some function ofε, the content
of which in some sense reflects the development of economics as a science. An example
is the additive formulationY= g(X,θ) + ε in which the sum of the systematic and
noise components represents the sample outcome, whereθ is a vector of unknown
and unobservable parameters andX is a set of conditioning variables. More specific
examples of the characterization ofY in terms of systematic and noise components will
be examined in Chapter 2.

Once the econometric model has been specified, the applied econometrician’s ob-
jective is to proceed to the econometric analysis of the model. A necessary ingredient
for such an analysis is the collection ofsample observationsof economic data relating
to the economic process under study. The analyst must then also devise astrategy for
estimation and inferencein which appropriate statistical procedures for information
discovery and recovery are identified within the context of the model being analyzed.

Given the sample observations and identified statistical procedures, the analyst then
conducts aneconometric analysisby applying the statistical procedures to the sample
data and generating estimates and inferences. The analyst then provides a statistical and
economic interpretation of the results obtained to complete the econometric analysis
of the economic process.

1.5. The Inverse Problem

A challenge in econometric analyses is that unknown and uncontrolled components
of the econometric model cannot generally be observed directly, and thus the analyst
must use indirect observations based on observable data to recover information on these
components. This challenge is associated with a concept in systems and information
theory called theinverse problem, which is the problem of recovering information
about unknown and uncontrolled components of a model from indirect observations on
these components. The adjectiveindirect refers to the fact that, although the observed
data are considered to be directly influenced by the values of model components, the
observations are not themselves the direct values of these components but only indirectly
reflect the influence of the components. Thus, the relationship characterizing the effect
of unobservable components on the observed data must be somehow inverted to recover
information about the unobservable model components from the data observations.
Because econometric relations generally contain a systematic and a noise component,
the problem of recovering information about unknowns and unobservables (θ, ε) from
sample observations (y, x) within the context of an econometric modelY=η(X, ε,θ)
is referred to as aninverse problem with noise. A solution to this inverse problem is of
the general form (y, x)⇒ (θ, ε).

Motivation for viewing a problem in econometric analysis as an inverse problem can
be provided by a familiar illustration involving the theory of the firm. Firm managers
need to make decisions concerning the profit-maximizing mix of inputs and levels of
outputs under fixed prices. To make these optimizing decisions, information is needed
on unknown components of the real-world production process such as the marginal

9
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products of inputs. The marginal products are not directly observable, but we can
observe the levels of outputs that result when various levels of inputs are used. These
observable outcomes of the production process areindirectobservations on the marginal
products that, although not equal to the values of the marginal products themselves, are
influenced by their values. Thus, we are confronted with an inverse problem: How can
we best use the observed levels of input and output to recover information about the
unobservable marginal products? At this point, in the absence of effective methods of
information recovery, it must be clear that few, if any, rational or informed bets could be
devised relative to the values of unknown, unobserved, and unobservable components of
our econometric models. The principal objective of this book is to provide a foundation
for the development of effective information recovery methods for this and other inverse
problems.

1.6. A Comment

We view an economic–probability–econometric model as a starting point that lets us
state, for all to see, what we are maintaining, or willing to assume, is known and
what we consider unknown and seek to discover relative to an economic process under
investigation. One of our econometric friends once remarked that he would rather be
asked by a curious 3-year-old where babies come from than to try to answer the question,
Where do econometric models come from? Perhaps it is less important where they
come from than what the models represent, which is a starting place – a postulational
base that leads to questions, experimentation, data collection, estimation, and finally
inference and conclusions. In other words, they are the basis for a research process in
which the model, the data, and the method of information recovery are interdependent
links in the knowledge search and recovery chain. In Chapter 2, we review some
interesting econometric questions and begin to examine the process of progressing
from an economic model to a probability–econometric model. Our intention is to start
the reader thinking about the estimation and inference methods for solving inverse
problems with noise.

1.7. Notation

Before moving to Chapter 2 to begin our conceptualization of some alternative econo-
metric models, we review here some notational conventions that give meaning to Fig-
ure 1.1 and the formulations we use in this book. A scalar random variable is denoted
by a capital letter such as X or Y. A multivariate random variable in the form of a
vector or matrix is denoted by a bold capital letter such asX or Y. A subscripted
index distinguishes between different random variables. For example, we will use Yi

to indicate one representative of a collection of random variables, (Y1, Y2, . . . , Yn).
Random variables whose outcomes we seek to explain will be referred to asdependent
variables. We will also be interested inexplanatory variables, whose values are used
to help explain the values of dependent variables.

10
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1.7 NOTATION

It is most often the case that an econometric model will contain more than one
explanatory variable. An index is then needed if we wish to distinguish the explanatory
variables from one another for a given observation. Depending on the circumstances,
explanatory variables may either be fixed or random. In either case we will use a
double subscript, where the first subscripted index denotes the observation number and
the second specifies the particular explanatory variable number. We normally useX or
x for a matrix of random or fixed explanatory variables, respectively. We emphasize
that in either the random or fixed case, boldface denotes a vector or a matrix, whereas a
nonboldfaced symbol will denote a scalar. Thus, if the explanatory variables are random,
then Xi j represents thei th potential observation on thej th random explanatory variable.
If the explanatory variables are fixed, then xi j is thei th value of thej th fixed explanatory
variable. An alternative notation for indicating the (i, j )th element of the explanatory
variable matrix will be the standard matrix element notation X[i, j ] or x[i, j ]. We will
also represent thei th row of the explanatory variable matrix byX i · or xi ·, or in standard
matrix notation, byX[i, .] or x[i, .]. The corresponding notation for designating thej th
column of the explanatory variable matrix will beX· j or x· j , and in standard matrix
notationX[., j ] or x[., j ].

As an example of the preceding notation, we may develop a model of individual
incomes Yi using observations on explanatory variables representing scores on intel-
ligence tests, years of schooling, highest degree obtained, grade point average (GPA),
gender, race, and geographical region. In general functional notation we may then
specify that Yi = g(X i ·) or Yi = g(X[i, .]), for i = 1, . . . ,n.

In representing general functions of variables, we will on occasion need to distinguish
betweenscalarandvectorfunctions of variables. The general notation will be g(x) and
g(x), respectively, where again, boldface denotes a vector. Furthermore, it is often the
case in representing the systematic part of econometric models that the same functional
definition is applied to each data observation. In this case, we will use the notation
g(xi ·) to denote the function applied to the observationxi · and then continue to use
g(x) to denote the vector of all of the observations, that is,g(x) = [g(x1·), g(x2·), . . . ,
g(xn·)] ′.

In some circumstances, we will want to characterize the values of dependent variables
over time. In cases where we want to emphasize the temporal nature of the observations
we will use at subscript to denote the time index. For example, one may be interested
in the values of a dependent and associated explanatory variables atn distinct time
periods. The dependent and explanatory variables at timet will be denoted by Yt and
X t · or X[t, .], respectively. A data set ofn observations over time would then consist
of yt andxt · or x[t, .] for t = 1, . . . ,n, where yt is the observed value of the random
variable Yt , andxt · or x[t, ·] is the observed value ofXt · at timet .

Note that there will be a few exceptions to the conventions introduced above when
precedent in the literature is so strong as to warrant an exception. An exception already
encountered in the text is the use ofε to denote therandomvariable representing the
noise component of an econometric model. Because we will later useeto denote an out-
come of the noise component, as is very often done in the literature, we avoid confusion
with the letterE, which is the conventional notation for mathematical expectation, and
instead chooseε to be the random variable whose outcome ise. We will be careful to

11
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identify notational exceptions when they are first introduced in the text, and, regarding
exceptions to the capital letter–random variable convention, we will endeavor to use
Greek-letter alternatives.

Now that we have a context for discussing econometric models and the notation to
represent them formally, in Chapter 2 we identify and classify a range of econometric
models that will be of major interest as we work our way through the chapters to come.

1.8. Idea Checklist – Knowledge Guides

1. Assume you are a theoretical econometrician. Identify a general format that you might
use in developing a research project or reporting a working paper or journal article.

2. Assume you are an applied econometrician. Identify a general format that you might use
in developing a research project or reporting a working paper or journal article.

3. To use later as a basis of comparison for how much your understanding of econometric
analysis has matured, write a short essay on the topic: Where do econometric models
come from?

4. To use later as a basis of comparison for how much your understanding of econometric
analysis has matured, write a short essay on the topic: Is econometrics necessary?

5. Test your ability to specify a simple linear statistical model that involves a set of data from
which you want to recover information on a mean-location level and a variance-scale
parameter.
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